|
Power Plants Around The World
|
Cooling towers
All thermal power plants produce waste heat energy as a byproduct of the useful electrical energy produced. The amount of waste heat energy equals or exceeds the amount of electrical energy produced. Gas-fired power plants can achieve 50% conversion efficiency while coal and oil plants achieve around 30-49%. The waste heat produces a temperature rise in the atmosphere which is small compared to that of greenhouse-gas emissions from the same power plant. Natural draft wet cooling towers at many nuclear power plants and large fossil fuel fired power plants use large hyperbolic chimney-like structures (as seen in the image at the left) that release the waste heat to the ambient atmosphere by the evaporation of water. However, the mechanical induced-draft or forced-draft wet cooling towers in many large thermal power plants, nuclear power plants, fossil fired power plants, petroleum refineries, petrochemical plants, geothermal, biomass and waste to energy plants use fans to provide air movement upward through downcoming water and are not hyperbolic chimney-like structures. The induced or forced-draft cooling towers are typically rectangular, box-like structures filled with a material that enhances the contacting of the upflowing air and the downflowing water.
In areas with restricted water use a dry cooling tower or radiators, directly air cooled, may be necessary, since the cost or environmental consequences of obtaining make-up water for evaporative cooling would be prohibitive. These have lower efficiency and higher energy consumption in fans than a wet, evaporative cooling tower.
|
|