|
Lightning Photography
|
The voltage involved for both is proportional to the length of the bolt. However, lightning leader development is not just a matter of the electrical breakdown of air, which is about 3 megavolts per meter (MV/m). The ambient electric fields required for lightning leader propagation can be one or two orders of magnitude (10−2) less than the electrical breakdown strength. The potential ("voltage") gradient inside a well-developed return-stroke channel is on the order of hundreds of volts per meter (V/m) due to intense channel ionization, resulting in a true power output on the order of one megawatt per meter (MW/m) for a vigorous return stroke current of 100 kA. The average peak power output of a single lightning stroke is about one trillion watts — one "terawatt" (1012 W), and the stroke lasts for about 30 millionths of a second — 30 "microseconds".
Lightning rapidly heats the air in its immediate vicinity to about 20,000 °C (36,000 °F) — about three times the temperature of the surface of the Sun. The sudden heating effect and the expansion of heated air gives rise to a supersonic shock wave in the surrounding clear air. It is this shock wave, once it decays to an acoustic wave, that is heard as thunder.
The return stroke of a lightning bolt follows a charge channel about a centimeter (0.4 in) wide.
Different locations have different potentials ("voltages") and currents for an average lightning strike. In the United States, for example, Florida experiences the largest number of recorded strikes in a given period during the summer season , has very sandy soils in some areas, and electrically conductive water-saturated soils in others. As much of Florida lies on a peninsula, it is bordered by the ocean on three sides. The result is the daily development of sea and lake breeze boundaries that collide and produce thunderstorms.
|
|