|
Mississippi Frozen River, United States
|
In spite of the second law of thermodynamics, crystallization of pure liquids usually begins at a lower temperature than the melting point, due to high activation energy of homogeneous nucleation. The creation of a nucleus implies the formation of an interface at the boundaries of the new phase. Some energy is expended to form this interface, based on the surface energy of each phase. If a hypothetical nucleus is too small, the energy that would be released by forming its volume is not enough to create its surface, and nucleation does not proceed. Freezing does not start until the temperature is low enough to provide enough energy to form stable nuclei. In presence of irregularities on the surface of the containing vessel, solid or gaseous impurities, pre-formed solid crystals, or other nucleators, heterogeneous nucleation may occur, where some energy is released by the partial destruction of the previous interface, raising the supercooling point to be near or equal to the melting point. The melting point of water at 1 atmosphere of pressure is very close to 0 °C (32 °F, 273.15 K), and in the presence of nucleating substances the freezing point of water is close to the melting point, but in the absence of nucleators water can super cool to −40 °C (−40 °F, 233 K) before freezing. Under high pressure (2,000 atmospheres) water will super cool to as low as −70 °C (−94 °F, 203 K) before freezing.
Exothermicity
Freezing is almost always an exothermic process, meaning that as liquid changes into solid, heat and pressure is released. This is often seen as counter-intuitive, since the temperature of the material does not rise during freezing, except if the liquid were supercooled. But this can be understood, since heat must be continually removed from the freezing liquid or the freezing process will stop. The energy released upon freezing is a latent heat, and is known as the enthalpy of fusion and is exactly the same as the energy required to melt the same amount of the solid.
|
|